metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jing-Mu Yang, Wen-Bing Ma, Bao-Hua Chen,* Guo-Sheng Huang and Yong-Xiang Ma

National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: chbh@lzu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C}-\text{C}) = 0.012 \text{ Å}$ R factor = 0.066 wR factor = 0.158Data-to-parameter ratio = 18.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[μ -(S)-1-(1-ferrocenylethylidene)-4-methylthiosemicarbazide- $\kappa^2 C^2$, N,S:S]bis(dicarbonylruthenium) dichloromethane solvate

The title compound, $[Ru_2Fe_2(C_5H_5)_2(C_9H_{11}N_2S)_2(CO)_4]$ -CH₂Cl₂ or $[FcC(Me)=NNHC(S)NHMe]_2Ru_2(CO)_4$ ·CH₂Cl₂ (where Fc = ferrocenyl), was isolated from the reaction of FcC(Me)=NNHC(S)NHMe and Ru₃(CO)₁₂. In the dimeric molecule, which lies on a crystallographic twofold axis, the two symmetry-related Ru atoms are in distorted octahedral coordination environments with two bridging S atoms in the equatorial plane and Ru–S bond distances of 2.514 (2) and 2.451 (2) Å.

Comment

The title compound, (I), was obtained from the reaction of FcC(Me)—NNHC(S)NHMe with $Ru_3(CO)_{12}$ under reflux in tetrahydrofuran (Krause & Ruggles, 1958). This type of reaction is useful in the synthesis of transition metal complexes (Zhao & Cao, 1993). The structure of (I) is shown in Fig. 1.

The molecule lies on a crystallogarphic twofold axis which passes through the center of the four-membered ring made by the two Ru atoms and the two bridging S atoms. Each Ru atom is in a distorted octahedral coordination environment (see Table 1), with bridging Ru–S distances of 2.514 (2) and 2.451 (2) Å. The thio–Schiff base ligand forms a five-membered chelate ring involving atoms Ru, C11, C12, C13 and N3, with the *ortho* H atom of the cyclopendadienyl ring having been displaced in the cyclometallation reaction. Dimer molecules which are related by further twofold symmetry are linked into chains in the *a*-axis direction by $N-H\cdots$ O hydrogen bonds (see Table 2 and Fig. 2).

Experimental

The compounds FcC(Me)==NNHC(S)NHMe (200 mg, 6.6 mmol) and $Ru_3(CO)_{12}$ (425 mg, 6.6 mmol) were dissolved in tetrahydrofuran (THF, 30 ml). After the mixture had been refluxed for 4 h, the THF was removed under reduced pressure. The residue was separated on a silica-gel column. The main band was eluted with petroleum ether (b.p. 333–363 K)-CH₂Cl₂ (ν/ν 3:1), from which the title compound

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 20 April 2004 Accepted 19 May 2004 Online 29 May 2004 (452 mg, 48%) was obtained as a dark-red solid. Calculated for $C_{33}H_{34}Cl_2Fe_2N_6O_4Ru_2S_2$: C 38.54, H 3.31, N 8.18%; found: C 40.41, H 3.25, N 8.09%.IR (KBr disc): 3398.6 (N-H), 2028.3, 2013.2, 1956.5 (C=O), 1570.4 (C-N). ¹H NMR (CDCl_3): 4.19 (*t*, 6H, C₅H₃), 4.14 (*s*, 10H, C₅H₅), 2.18(*s*, 1H, NH), 1.57 (*s*, 6H, CH₃), 1.25(*s*, 6H, CH₃).

 $D_x = 1.818 \text{ Mg m}^{-3}$

Cell parameters from 1101

Mo $K\alpha$ radiation

reflections

 $\theta = 5.3-43.7^{\circ}$ $\mu = 1.85 \text{ mm}^{-1}$

T = 293 (2) K

Plate, dark red

 $0.40 \times 0.19 \times 0.05 \text{ mm}$

independent reflections reflections with $I > 2\sigma(I)$

Crystal data

$$\begin{split} & [\mathrm{Ru}_{2}\mathrm{Fe}_{2}(\mathrm{C}_{5}\mathrm{H}_{5})_{2}(\mathrm{C}_{9}\mathrm{H}_{11}\mathrm{N}_{2}.\\ & \mathrm{S})_{2}(\mathrm{CO})_{4}]\cdot\mathrm{CH}_{2}\mathrm{Cl}_{2}\\ & M_{r}=1027.54\\ & \mathrm{Monoclinic}, P2/n\\ & a=7.8664~(12)~\text{\AA}\\ & b=10.7140~(16)~\text{\AA}\\ & c=22.582~(3)~\text{\AA}\\ & \beta=99.569~(3)^{\circ}\\ & \mathcal{V}=1876.7~(5)~\text{\AA}^{3}\\ & Z=2 \end{split}$$

Data collection

Bruker SMART CCD	4307 independ
diffractometer	2226 reflection
φ and ω scans	$R_{\rm int} = 0.167$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.1^{\circ}$
(SADABS; Bruker, 1997)	$h = -9 \rightarrow 10$
$T_{\min} = 0.629, \ T_{\max} = 0.910$	$k = -15 \rightarrow 14$
10883 measured reflections	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.0308P)^2]$
$wR(F^2) = 0.158$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.86	$(\Delta/\sigma)_{\rm max} = 0.001$
4307 reflections	$\Delta \rho_{\rm max} = 1.60 \ {\rm e} \ {\rm \AA}^{-3}$
233 parameters	$\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ru-C2	1.847 (10)	Ru-N3	2.105 (6)
Ru-C1	1.897 (9)	Ru-S	2.451 (2)
Ru-C11	2.069 (7)	Ru-S ⁱ	2.514 (2)
C2-Ru-C1	89.7 (4)	C11-Ru-S	156.4 (2)
C2-Ru-C11	94.3 (3)	N3-Ru-S	79.45 (18)
C1-Ru-C11	95.3 (3)	C2-Ru-Si	175.4 (2)
C2-Ru-N3	89.5 (3)	C1-Ru-Si	86.9 (3)
C1-Ru-N3	174.0 (3)	C11-Ru-Si	89.0 (2)
C11-Ru-N3	78.8 (3)	N3-Ru-S ⁱ	94.18 (18)
C2-Ru-S	94.5 (3)	S-Ru-S ⁱ	83.53 (8)
C1-Ru-S	106.5 (3)		

Symmetry code: (i) $\frac{1}{2} - x$, y, $\frac{3}{2} - z$.

Table 2

Hydrogen-bonding	geometry	(A,	0)
------------------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdots O2^{i}$	0.86	2.38	3.205 (9)	160
Symmetry code: (i) $\frac{3}{2}$	$-x, y, \frac{3}{2}-z$			

All H atoms were placed in calculated positions, with C–H distances ranging from 0.96 to 0.98 Å and N–H distances of 0.86 Å. They were included in the refinement in riding-model approximation, with $U_{\rm iso} = 1.2U_{\rm eq}$ (1.5_{eq} for methyl) of the carrier atom. The highest three peaks in the final difference Fourier map (over 1.00 e Å³) were within 1.36 Å of Ru. The $R_{\rm int}$ value is higher than normal because the

Figure 1

The title molecule with labelling of the non-H atoms and 30% probability ellipsoids. Unlabelled atoms are related by the symmetry code $\frac{3}{2} - x, y, \frac{3}{2} - z$. The solvent molecule has been omitted.

Figure 2

View (Spek, 2004) of the $N-H\cdots O$ hydrogen bonding (shown as dashed lines) in the *a*-axis direction. Colour codes: green Ru, yellow Fe, dark-red S, red O, blue N and black C. H atoms bonded to C atoms have been omitted.

crystal and hence the data were less than ideal quality. This, in turn, can lower the precision of the structure.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT* and *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of Gansu Province (No. ZS031-A25-011-G) for financial support.

References

Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Krause, A. & Ruggles, R. (1958). Inorg. Nucl. Chem. Lett. 4, 555-558.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2004). PLATON. University of Utrecht, The Netherlands.

Zhao, G. & Cao, Y. (1993). Synth. React. Inorg. Met. Org. Chem. 23, 1379–1389.